learning,

Deep learning - course take-aways

Gerald Haslhofer Gerald Haslhofer Follow Apr 26, 2020 · 1 min read
Deep learning - course take-aways
Share this

Notes from PyTorch bootcamp

Source

Numpy

import numpy as np
x = np.array([1,1])

Simple arithmetic

x = np.array([4,4,6])
y = np.array([5,3.4,6])
z = x +  y
print (z)

Dot product:

np.dot(x,y)

Matrix: np.matrix

x = np.matrix([[4,5], [6,7])

Matrix multiplication:

np.multiply(a,b) - elementwise; otherwise a*b

Inverse matrix:

from numpy.linalg import inv
print (inv(x))

PyTorch

import torch
import numpy as np
x = [[4,3],[5,6]]
y = np.array(x)
z = torch.Tensor(y)